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Abstract 

A hybrid meta-heuristic named variable neighborhood migrating birds optimization (VNMBO), which is a combination of variable 

neighborhood search (VNS) and migrating birds optimization (MBO). The main aim of this paper is to provide a new way for MBO to 

solve the flexible job shop scheduling problem (FJSP). A two-stage population initialization scheme was first adopted to improve the 

quality of the initial solutions. An individual leaping mechanism was introduced to the algorithm in order to avoid the premature 

convergence. To search the solution space effectively, three neighborhood structures were designed and a VNS was developed to enhance 

the local searching ability. Finally, to assess the performance of the proposed VNMBO, some published algorithms were compared by 

using two famous benchmark data sets. The comparison results show that the proposed VNMBO is effective for solving the FJSP with the 

objective of minimizing the makespan. 
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1. Introduction 

 

Workshop scheduling plays a more and more important role in the production management system due to the growing 

consumer demands, reduced product life cycles, and constantly changing market conditions [19]. An effective scheduling 

scheme can help the manufacturers reduce the production cost and delivering product time to customers. The scheduling 

process is a decision-making process that deals with the limited resources allocation to tasks, and has a big impact on 

achieving various production goals. 

 

Since the first scheduling research appeared in 1954 by Johnson [5], studies on this topic have taken serious attention in 

the manufacturing field. The classic job shop scheduling problem (JSP) is one of the most popular problems in the 

manufacturing area, which has been proved to be NP-hard. In JSP, operations can be only processed on one machine. 

However, in the real-life production, the processing of an operation can be conducted on different machines, so that an 

extension of the JSP called the flexible job shop scheduling problem (FJSP) is further considered. It breaks the limitation of 

unique resources and allows each operation to be processed by alternative machines. In the past decades, the FJSP has 

captured the interests of many researchers. Kacem et al. [6,7] dealt with the multi-objective FJSP and proposed some 

approaches to minimize the makespan, the total workload of machines and the workload of the critical machine. 

Brandimarte [1] proposed a hierarchical algorithm for solving the FJSP based on the tabu search. Ziaee [19] considered the 

FJSP with the objective of minimizing the makespan and developed an efficient heuristic algorithm. Li et al. [9] combined 

the particle swarm optimization with tabu search and presented a PSO+TS to minimize the makespan in the FJSP. Xing et 

al. [18] integrated the ant colony optimization (ACO) model and knowledge model to propose a KBACO algorithm. Nouiri 

et al. [11] developed an efficient and distributed particle swarm optimization algorithm (PSO) to minimize the makespan. 

http://www.ijpe-online.com/
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With the rapid development of intelligent algorithms, a new population-based algorithm called migrating birds 

optimization (MBO) is first proposed by Duman et al. [3] for solving quadratic assignment problems. The basic idea of the 

algorithm comes from the V-shaped flight formation of migrating birds. Duman et al. [3] demonstrated that MBO performs 

better than other metaheuristic-based optimization algorithms. At present, some researchers have applied the MBO to solve 

the scheduling problem in the area of production and operation management. Pan and Dong [12] proposed an improved 

MBO to solve the hybrid flow shop scheduling problem with the objective of minimizing the total flow time. Xie et al. [17] 

studied the scheduling problem in a blocking flow shop and proposed an effective MBO to minimize the flow time. Gao and 

Pan [4] proposed a shuffled multi-swarm micro-migrating birds optimization algorithm to solve a multi-resource 

constrained flexible job shop scheduling problem. Tao et al. [10] considered an integrated lot-streaming flow shop 

scheduling problem and presented an improved migrating birds optimization (IMMBO) to minimize the makespan. 

Following the successful applications of MBO, the main contribution of this paper is to derive a variable neighborhood 

migrating birds optimization (VNMBO) for solving the FJSP with the criterion to minimize the makespan. In the proposed 

algorithm, some effective technologies were introduced into the basic MBO, which are the initial population generation 

approach, the individual leaping mechanism and the variable neighborhood search strategy. Extensive experimental data 

demonstrates the effectiveness of our proposed algorithm. 

 

2. Problem description and formulation 

 

For a FJSP, n  jobs need to be processed on m machines. Each job consists of several operations with a predetermined order 

in sequence. Processing time of each operation is determined by the assigned machine. Two sub-problems are involved in 

the FJSP, i.e., the machine assignment and the operation permutation. Machine assignment attempts to assign each 

operation to an appropriate machine. Operation permutation aims to acquire the processing sequence of operations assigned 

to machines. 

 

For such a complex system, some assumptions are listed as below. 

 

(1)Machines and jobs are simultaneously available at time 0. 

(2)Each machine can perform only one operation at a time. 

(3)No job preemption is allowed. 

(4)Precedence constraints exit between operations of the same job. That is, each operation must be processed after its 

predecessor operation is completed. 

(5)Jobs are independent with each other and have the same priorities. 

(6)Setup time between two successive operations on the same machine can be negligible. 

To facilitate the establishment of the mathematical model, some symbols and variables are defined. 

n : number of jobs; 

m : number of machines; 

iJ : number of operations of job i ; 

ijO : the j th operation of job i ; 

ijkp : processing time of ijO  on machine k ; 

ijS : start time of ijO ; 

ijC : complete time of ijO ; 

maxC : makespan; 

 : a large positive number; 

ijkx : 0-1 variable, if ijO  is processed on machine k , ijkx =1; otherwise, ijkx =0; 

iji j ky   : 0-1 variable, if ijO  is processed on machine k  prior to ijO , iji j ky   =1; otherwise, iji j ky   =0. 

The general mathematical model of the FJSP with the criterion to minimize the makespan is built as below: 

maxmin min(max( ))ijC C                                                                             (1) 

s.t. 
1

, 1, 2, , ; 1, 2, ,
m

ij ij ijk ijk i

k
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

                                                                (2) 
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                                                 (4) 
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 0,1 , , 1,2, , ; , 1,2, , ; 1,2, ,iji j k iy i i n j j J k m 
                                                 (8) 

 

Equation (1) means that the optimization objective is to minimize the maximum completion time; constraint (2) ensures 

that no preemption is allowed for each operation; constraint (3) guarantees the precedence constraints between operations; 

constraint (4) and (5) present that every machine can only perform one operation at a time; constraint (6) shows that each 

operation cannot be assigned to another machine if it starts; equations (7) and (8) gives 0-1 variables. 

 

3. The Proposed VNMBO 

 

3.1. Encoding Scheme 

 

Considering the machine assignment and the operation permutation in the FJSP, a two-phase encoding scheme is adopted in 

the proposed VNMBO (see Figure 1). Each solution can be divided into two components, whose length equals the total 

number of operations. In the first section, job-based encoding is employed, and the value of each element is the code of a 

job (see Figure 1(a)). Operations of the same job have the same value, e.g., the third ‘2’ represents the third operation of job 

2. In the second section, machine-based encoding is used, and the value of each element is the code of the machine assigned 

to an operation (see Figure 1(b)). 
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2 13443121

(a) job-based encoding

(b) machine-based encoding
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Figure 1. Encoding scheme 

3.2. Initial Population 

 

Like other population-based optimization algorithms, population initialization is also the crucial factor in the MBO, which 

can affect the convergence speed and the quality of the final solution. In this section, the machine assignment and the 

operation permutation are separately generated for a solution in the initial population. 

 

(1) For the machine assignment section, the approaches proposed by Pezzella et al. [13] are adopted, which are named 

AssignmentRule1 and AssignmentRule2. In addition, the random selection rule is used to maintain the diversity of 

solutions. The adoption of a mix of these three approaches acquires the initial assignments. In this paper, 20% of 

initial population could be generated by AssignmentRule1, 70% by AssignmentRule2 and 10% by random 

selection. 

 

(2) For the operation sequencing section, random permutation and dispatching rules are always adopted in literatures. 

Here, the initial operation sequencing schemes are obtained by a searching method, which was proposed by Demir 

and İşleyen [2]. For each generated machine assignment scheme, a fixed number of operation sequencing schemes 

are first generated by random permutation and four dispatching rules (SPT, LPT, MWR, MOR). The optimization 

objective is evaluated for each combination of the machine assignment and the operation permutation. The best one 

will be selected as the initial population. The four dispatching rules can be explained as follows: 

 

SPT: Select the job with the shortest processing time.  

LPT: Select the job with the largest processing time. 

MWR: Select the job with the most amount of work remaining.  

MOR: Select the job with the most number of operations remaining. 
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3.3. Neighborhood Structure 

 

In the MBO, the improvement process of solutions is implemented by searching neighbors. Therefore, three types of 

neighborhood structures are employed in our algorithm to acquire the neighboring solutions. The first two neighborhood 

structures attempt to change the operation sequence, and the third tries to alter the machine assignment in the candidate 

solution. The construction processes of these neighborhood structures are presented as follows:  

 

(1) Neighborhood structure 
1N  

Two positions are chosen at random in the first section of the current solution. Then, the back operation is inserted into 

the front of another one to acquire a neighboring solution (see Figure 2). 

 

1 32332112

1 32321132
 

Figure 2. Neighborhood structure 
1N  

(2) Neighborhood structure 
2N  

First, two operations corresponding to different jobs are selected randomly from the first section of the current solution. 

Then, the positions of the selected operations are interchanged with each other (see Figure 3). 

 

1 32332112

1 32312132
 

Figure 3. Neighborhood structure 
2N  

  (3) Neighborhood structure 
3N  

  Neighborhood structure
3N is generated based on the mutation operator proposed by Demir and İşleyen [2]. An 

operation, which can be processed on more than one machine, is selected from the second section at random. The current 

machine is replaced by the one with the shortest processing time for the selected operation among all alternative machines 

(see Figure 4). 
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Figure 4. Neighborhood structure 

3N  

3.4 Individual Leaping Mechanism 

 

To avoid the premature convergence, an individual leaping mechanism is adopted in the proposed algorithm. For the 

population, if the best solution is not replaced by an improved solution for lm  iterations, all solutions will be reset to 

acquire a new initial population. In such a way, the algorithm might move away from the suboptimum and find a better 

solution in the long run. 

 

3.5 Variable Neighborhood Search 

 

Variable neighborhood search (VNS) has been successfully applied to solve various optimization problems [8,14,15,16]. It 

is capable of escaping from the local optima by systematically changing the neighborhood structures. In the VNMBO, on 

the basis of the above neighborhood structures, the proposed VNS is executed on the current best individual of the 

population to enhance the local search capacity. 
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The detailed steps of the VNS are shown as below: 

 

Step 1: Initialization. Get the initial solution , 1 , 2max l and set the maximum iteration max . 

Step 2: Set 1l  . 

Step 3: Shaking. If 1l  ,
1( )N  and

3 ( )N  are adopted simultaneously to obtain a new solution   ; if 2l  ,
2 ( )N  and

3 ( )N  are applied. 

Step 4: Local search. Perform a local search method to   , and get the local optima   . 

Step 5: If 
max max( ) ( )C C    is met, then   , 1l  ; otherwise, 1l l  . 

Step 6: Judge whether maxll  is satisfied. If yes, then 1 , and perform Step 7; otherwise, go to Step 3. 

Step 7: Judge whether max  holds. If yes, go to Step 8, otherwise, go to Step 2. 

Step 8: Terminate the procedure. 

 

For the local search in the VNS, the detailed steps are presented as follows: 

 

Step 1: Initialization. Get the initial solution  from the shaking part of the VNS, and set 1  , 3max q and the 

maximum iteration 
max . 

Step 2: Set 1q  . 

Step 3: If 1q  , 
1( )N    is executed to obtain a new solution  ; if 2q  , 

2 ( )N   is employed; if 3q  , 
3( )N    is 

used. 

Step 4: If 
max max( ) ( )C C    holds, then   , q q ; otherwise, 1q q  . 

Step 5: Judge whether maxqq   is satisfied. If yes, then 1   , and go to Step 6; otherwise, go to Step 3. 

Step 6: Judge whether max   is met. If yes,    , go to Step 7, otherwise, go to Step 2. 

Step 7: Terminate the local search. 

 

3.6. Steps of the VNMBO 

 

Having described the VNMBO algorithm, we give the detailed steps as follows: 

 

Step 1: Fix the parameters of the VNMBO, including the population size popsize , the number of neighboring 

solutions k  , the number of shared neighboring solutions x , the number of tours G , the age limit lm  and the maximum 

iteration maxK , maxit  and 
max . 

Step 2: Generate the initial population by using the method in Section 3.3. 

Step 3: Set 1K , 1g , 1fg  . 

Step 4: Generate k   neighboring solutions randomly, improve the leader solution and fill the two shared neighboring 

sets 
LS  and 

RS , which has x  elements. 

Step 5: For each solution 
L  in the left line L  of the V-shaped formation, randomly generate k x   neighbors 

according to 
1N , 

2N  and 
3N . LN  represents the set of the newly generated k x   neighbors. The best solution in 

L LN S  is used to replace the current solution 
L . The x  best unused solutions in L LN S  are selected to refill 

LS . 

Step 6: For each solution 
R  in the right line R , randomly generate k x   neighbors. RN  represents the set of the 

newly generated k x   neighbors. The best solution in 
R RN S  is used to replace the current solution 

R . The x  best 

unused solutions in 
R RN S  are selected to refill 

RS . 

Step 7: Perform the VNS to each solution in the current population and replace the original one if it is improved. 

Step 8: Update the current best solution. 

Step 9: Perform the reset mechanism if the best solution remains unchanged for lm  iterations. 

Step 10: Set 1 gg . If g G  is met, set 1g , go to Step 11; otherwise, go to Step4. 

Step 11: Set a new leader bird. If 1fg  , move the leader to the tail of line L , and set the first solution of L  as the 

new leader bird, and then set 0fg  ; otherwise, move the leader to the tail of line R , and set the first solution of R  as the 

new leader, and then set 1fg  . 
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Step 12: Set 1KK , if 
maxK K  is met, go to Step 13; otherwise, go to Step 4. 

Step 13: Terminate the procedure. 

 

4. Experiment Validations 

 

In this section, two types of benchmark problems are taken from Kacem et al. [6,7] (Kacem data) and Brandimarte [1] 

(BRdata) are used to test the performance of the proposed VNMBO. For each benchmark instance, 10 independent 

replications were conducted. As recommended by Duman et al. [3], four parameters are fixed as follows: the population size 

popsize =51; the number of neighboring solutions k  = 3; the number of the shared neighboring solutions x =1; and the 

number of tours G =10. In addition, the other parameters of the algorithms are selected based on the comparison of 

experimental data under different combinations of them. Thus, we set lm =10, max =30 and
max =10. The value of maxK is 

presented in table 1 for each different problem. 

 

4.1 Effectiveness of the Individual Leaping Mechanism 

 

The effectiveness of the individual leaping mechanism is first verified here. By excluding the mechanism from the 

VNMBO, we named the obtained algorithm as VNMBO-1. The average makespan 
maxAVC and the standard deviation SD

for each instance are listed in table 1.  
Table 1. Comparison Results of VNMBO and VNMBO-1 

Instance nm Kmax
 

VNMBO VNMBO-1 

AVCmax SD AVCmax SD 

Kacem01 4×5 nm 11.0 0.00 11.0 0.00 

Kacem02 8×8 nm 14.0 0.00 14.4 0.52 

Kacem03 10×7 nm 11.0 0.00 11.2 0.42 

Kacem04 10×10 nm 7.0 0.00 7.6 0.52 

Kacem05 15×10 nm 12.6 0.52 14.0 0.82 

MK01 10×6 2nm 40.8 0.79 41.7 0.67 

MK02 10×6 2nm 29.0 0.82 29.9 0.99 

MK03 15×8 nm 204.0 0.00 204.3 0.95 

MK04 15×8 2nm 67.2 0.63 68.3 1.34 

MK05 15×4 3nm 176.9 1.60 179.1 1.91 

MK06 10×15 4nm 71.0 2.45 74.6 3.34 

MK07 20×5 4nm 148.7 1.57 151.6 2.55 

MK08 20×10 nm 523.0 0.00 523.0 0.00 

MK09 20×10 4nm 307.0 5.93 314.6 9.10 

MK10 20×15 3nm 241.1 3.11 251.3 4.22 

 

 
Figure 5. Convergence curve of the instance MK05 
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It can be seen from Table 1 that the leaping mechanism can improve the computational results 
maxAVC  of 

VNMBO. It makes VNMBO yield two results equal to VNMBO-1 and thirteen better than VNMBO-1. In addition, 

VNMBO generates smaller SD  values than VNMBO-1, which shows that the proposed leaping mechanism can 

enhance the robustness of the VNMBO to the initial populations. Figure 5 shows the convergence curve of the 

instance MK05 by using the two algorithms, which shows that the convergence feature of VNMBO is better than 

VNMBO-1. The leaping mechanism can avoid the premature convergence. As a whole, these findings demonstrate the 

effectiveness of the individual leaping mechanism. 

 
4.2 Effectiveness of the Proposed VNMBO 

 

The effectiveness of the proposed VNMBO for solving the FJSP is evaluated based on the Kacem data and BRdata.  Table 2 

and Table 3 show the comparison results of best makespan values (
maxBC ) between the proposed VNMBO and other 

published algorithms: AL+CGA [6], tabu search (TS) [7], PSO+TS [9], KBACO [18], effective and distributed PSO 

(edPSO) [11], heuristic algorithm (HA) [19]. The computational results of compared algorithms have been reported in 

literatures. The symbol ‘-’ means that the related value is not given. In addition, Figures 6 and 7 illustrate the Gantt charts of 

the instances MK01 and MK07. 
Table 2. Comparison of Results on Kacem Instances 

Instance AL+CGA PSO+TS KBACO edPSO HA VNMBO 

Kacem01 - 12 11 11 11 11 

Kacem02 15 - 14 17 15 14 

Kacem03 - 11 11 - 13 11 

Kacem04 7 7 7 8 7 7 

Kacem05 23 - 11 - 12 12 

 

Table 3. Comparison of Results on Brandimarte Instances 

Instance 
TS KBACO edPSO HA VNMBO 

BCmax RPD BCmax RPD BCmax RPD BCmax RPD BCmax RPD 

MK01 42 7.7 39 0 41 5.1 42 7.7 40 2.6 

MK02 32 23.1 29 11.5 26 0 28 7.7 28 7.7 

MK03 204 0 204 0 207 1.4 204 0 204 0 

MK04 81 24.6 65 0 65 0 75 15.4 66 1.5 

MK05 186 8.8 173 1.2 171 0 179 4.7 173 1.2 

MK06 86 41.0 67 9.8 61 0 69 13.1 66 8.2 

MK07 157 9.0 144 0 173 20.1 149 3.5 144 0 

MK08 523 0 523 0 523 0 555 6.1 523 0 

MK09 369 24.2 311 4.7 307 3.4 342 15.2 297 0 

MK10 269 17.5 229 0 312 36.2 242 5.7 237 3.5 

AVRPD   15.6  2.7  6.6  7.9  2.5 

   
According to table 2 and table 3, it can be seen that: 

 

(1) For the five Kecam instances in table 2, our VNMBO achieves the optimal solutions in Kacem01~04. In the 

instance Kacem05, there is just one time unit difference between the best makespan obtained by our algorithm and 

the published KBACO. 

 

(2) For the ten Brandimarte instances in table 3, maxBC and RPDare compared between our algorithm and others. 

RPD  represents the relative percent deviation which is calculated as follows: 

maxmaxmax /)(100 CBCBBCRPD   where maxBC  is the best makespan obtained by each algorithm, maxCB  is 

the minimum of maxBC among all algorithms. As shown in table 3, the average relative percent deviation AVRPD

of the presented VNMBO outperforms other four algorithms. Figure 8 shows a graphical comparison of the RPD 

values of the methods for different instances. 
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Figure 6. The Gantt chart of the MK01 

 
Figure 7. The Gantt chart of the MK07 

 

5. Conclusions 

 

For the characteristics of the flexible job shop, a hybridization algorithm based on MBO and VNS is proposed to solve the 

FJSP. To ensure the quality of the initial solutions, a two-stage population initialization scheme is designed. Then, an 

individual leaping mechanism is developed to avoid the premature convergence. To search the solution space, three 

neighborhood structures are developed to generate the neighborhood solutions, and base on which a variable neighborhood 

search algorithm is proposed to enhance the local search capacity. Finally, extensive computational data reveal that 

VNMBO is effective for solving the FJSP with the criterion to minimize the makespan. For further study, we give the 

following suggestions: 

 

(1) Developing other hybrid algorithms such as MBO-SA and MBO-TS for FJSP. 

(2) Consider other constraints in the model such as setup time of machines, random processing time of operations, and 

precedence constraints among operations of different jobs, etc. 

(3) Applying the MBO algorithm to solve a multi-objective FJSP. 
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Figure 8. Comparison of the RPD values   
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