
Checking Safety Properties of

Concurrent Programs

Huimin Lin

joint work with Yi Lv, Hong Pan, Peng Wu

Institute of Software, Chinese Academy of Sciences

SERE 2012 June 22, 2012

Concurrent software systems

• Safety-critical

* Nuclear reactor control

* Medical treatment systems

* Train control systems

* ...

• Complicated behaviors

* Complexity grows exponentially in the number of components

• Safety properties are difficult to ensure

1

Concurrent programs vs. Sequential programs

Sequential programs: Input =⇒ Output

* Terminating

* Deterministic: same input, same output

* Failure reproducible: outcome of test is meaningful

Concurrent programs: Interacting with environment

* Nonterminating

* Nondeterministic: same initial configuration, different execution traces

* Failure not reproducible: outcome of test is meaningless

2

Model checking [Clarke & Emerson & Sifakis, 1981]

Automatically verify if a concurrent system has desired behaviors

A concurrent system is modeled as a transition system M

A property is specified as a formula φ in some temporal logic (CTL,

LTL, µ-calculus ...)

For finite state systems, it is decidable if M |= φ

– in case the answer is “No”, a counter-example (an execution trace)

can be generated leading to the faulty state

3

Traditionally, model checking research tends to focus on “system skele-

tons” in which data aspects are largely ignored

– message-exchanging are simplified to synchronization on signals

– temporal logics (CTL, LTL, µ-calculus ...) are propositional

However, ignoring data aspects in concurrent software-rich systems is

dangerous: systems with serious safety bugs may get model checked

The purpose of this talk: to introduce a methodology for model check-

ing concurrent programs, where data are treated as “first-class citi-

zens”

4

Outline

1. Symbolic transition graphs

2. First-order µ-calculus

3. A local model checking algorithm

4. Case studies

5. Summary and future directions

5

Symbolic Transition Graphs (STGs): A model for concurrent programs

Each note n is associated with a set of (free) variables fv(n)

Edges are of the form n
b, x:=e, α7−→ m

b: Boolean expression

x: data variable

e: data expression

α: communication action

c?x input
c!e output

τ internal communication

Satisfying some consistency constraints:

fv(b, e) ⊆ fv(n)
fv(α) ⊆ {x}
fv(m) ⊆ {x} ∪ bv(α)

6

Example: Stack of capacity 2

-'

&

-'

& ?

?

{ }

{x}

{x, y}

push?xpop!x

push?ypop!y

7

Example: Counting machine

?

¡
¡

¡
¡

¡
¡

¡
¡

¡¡ª

@
@

@
@

@
@

@
@

@@

©©©©©©©©¼

start?x

{x} x>0

x:=x−1

down!

x≤0

go!

8

Example

Idle

RecX

RecY

Cmp

End

start?end!

x 0,

a?y

a?x
x<0,

error!x

y<0,

error!y

y 0

-2 y-x 2,

p:=y-x,

ok!p

y 0

(y-x >2

y-x < 2),

nok!(x,y)

9

Compared with flow-chart programs

No conditional nodes: guards are carried on edges

Guards on different out-going edges of the same node may be true at

the same time: nondeterminism

10

Parallel composition (with channel restriction)

(G‖H)dR: product of G and H with channel names in R restricted

n
b,θ,α7−→ n′

< n, m >
b,θ∪{y:=y},α7−→ < n′, m >

chan(α)∩R=∅
fv(m) = {y}

m
b,θ,α7−→ m′

< n, m >
b,θ∪{y:=y},α7−→ < n, m′ >

chan(α)∩R=∅
fv(n) = {y}

n
b1,θ1,c?x7−→ n′, m

b2,θ2,c!e7−→ m′

< n, m >
b1∧b2,θ1∪θ2∪{x:=eθ2},τ7−→ < n′, m′ >

11

Labeled transition systems induced from STGs

State: (m, ρ) (m an STG node, ρ : Var → Val)

m
b,x:=e,τ7−→ n

(m, ρ)
τ−→ (n, ρ{x 7→ ρ(e)})

ρ |= b

m
b,x:=e,c!e′7−→ n

(m, ρ)
c!ρ(e′[e/x])−→ (n, ρ{x 7→ ρ(e)})

ρ |= b

m
b,x:=e,c?y7−→ n

(m, ρ)
c?y−→ (n, ρ{x 7→ ρ(e)})

ρ |= b

12

First-order µ-Calculus (finite part)

Syntax

φ ::= p | φ ∧ ψ | φ ∨ ψ | ∀xφ | ∃xφ |

〈α〉φ | [α]φ

Modalities: 〈c!e〉, [c!e], 〈c?x〉, [c?x]

13

Semantics

Formulas are interpreted over labeled transition systems

(m, ρ) |= 〈c!e〉φ if for some (n, ρ′) s.t. (m, ρ)
c!ρ(e)−→ (n, ρ′), (n, ρ′) |= φ

(m, ρ) |= [c!e]φ if for all (n, ρ′) s.t. (m, ρ)
c!ρ(e)−→ (n, ρ′), (n, ρ′) |= φ

(m, ρ) |= 〈c?x〉φ if for some (n, ρ′) s.t. (m, ρ)
c?y−→ (n, ρ′),

(n, ρ′{y 7→ v}) |= φ[v/x] for all v ∈ Val

(m, ρ) |= 〈c?x〉φ if for all (n, ρ′) s.t. (m, ρ)
c?y−→ (n, ρ′),

(n, ρ′{y 7→ v}) |= φ[v/x] for all v ∈ Val

· · ·

14

The logic defined so far is finite: we can say “a process will send m

along channel c within three steps of computation”, by writing

〈c!m〉true ∨ 〈−〉〈c!m〉true ∨ 〈−〉〈−〉〈c!m〉true

But we cannot say “a process will eventually send m along channel c”.

The standard approach to describing infinite behaviour is to use fixpoint

formulas. For instance, in propositional µ-calculus, the above property

can be written as a least fixpoint formula:

µZ.〈c!m〉true ∨ 〈−〉Z
By fixpoint unwinding, this intuitively means

〈c!m〉true ∨ 〈−〉(〈c!m〉true ∨ 〈−〉(〈c!m〉true ∨ 〈−〉(〈c!m〉true ∨ · · ·)))

15

However, for first-order µ-calculus, there is a potential problem.

Consider the formula

A = ∃x.µZ.〈c!x〉true ∨ ∃x.〈−〉Z
which is equivalent to

B = ∃x.µZ.〈c!x〉true ∨ ∃y.〈−〉Z

But unwinding them will result in semantically different formulas:

A ≡ ∃x.〈c!x〉true ∨ ∃x.〈−〉(〈c!x〉true ∨ · · ·)
is not equivalent to

B ≡ ∃x.〈c!x〉true ∨ ∃y.〈−〉(〈c!x〉true ∨ · · ·)
Because in the first formula the out-most quantifier binds only the

x in the first 〈c!x〉 subformula of A, while in the second formula the

out-most quantifier binds all occurrences of x in the body of B.

16

The problem lies in the fact that the (propositional) variable Z in the

body of the fixpoint formula

µZ.〈c!x〉true ∨ ∃x.〈−〉Z

stands for the entire formula which has x free. But this cannot be seen

from the syntax.

17

First-order µ-Calculus (fixpoints)

Predicates: functions from data expressions to propositions

Predicate variables: X, Y . . . , each has an arity

Λ ::= (x)φ | X | µX.Λ | νX.Λ

φ ::= p | φ ∧ ψ | φ ∨ ψ | ∀xφ | ∃xφ |

〈α〉φ | [α]φ | Λ(e)

In µX.Λ and νX.Λ, X is bound with scope Λ

18

Now the formula A can be written as

(µY.(x)(〈c!x〉true ∨ ∃x.〈−〉Z(x))(x)

Changing bound variable x to y will result in

(µY.(x)(〈c!x〉true ∨ ∃y.〈−〉Z(y))(x)

which is equivalent to the original formula.

19

Understanding fixpoints

Counting machine

?

¡
¡

¡
¡

¡
¡

¡
¡

¡¡ª

@
@

@
@

@
@

@
@

@@

©©©©©©©©¼

start?x

{x} x>0

x:=x−1

down!

x≤0

go!

Counting will eventually finish: [start?x]µZ.(〈go!〉true ∨ [down!]Z)

\� for �nite looping"

Intuitively

�Z:� = �0 _ �1 _ �2 _ � � �
where �0 = false, �i+1 = �[�i=Z]

20

Understanding fixpoints

Counting machine

?

¡
¡

¡
¡

¡
¡

¡
¡

¡¡ª

@
@

@
@

@
@

@
@

@@

©©©©©©©©¼

start?x

{x} x>0

x:=x−1

down!

x≤0

go!

Counting will eventually finish: [start?x]µZ.(〈go!〉true ∨ [down!]Z)

“µ for finite looping”

Intuitively

µZ.φ = φ0 ∨ φ1 ∨ φ2 ∨ · · ·
where φ0 = false, φi+1 = φ[φi/Z]

20-a

Understanding fixpoints

Can push a value: 〈push?x〉true

Can pop a value immediately after it is pushed: [push?x]hpop!xitrue

This behavior can repeat forever: �Z:[push?x]hpop!xiZ

\� for in�nite looping"

Intuitively, �Z:� = �0 ^ �1 ^ �2 ^ � � � where �0 = true, �i+1 = �[�i=Z].

21

Understanding fixpoints

Can push a value: 〈push?x〉true

Can pop a value immediately after it is pushed: [push?x]〈pop!x〉true

This behavior can repeat forever: �Z:[push?x]hpop!xiZ

\� for in�nite looping"

Intuitively, �Z:� = �0 ^ �1 ^ �2 ^ � � � where �0 = true, �i+1 = �[�i=Z].

21-a

Understanding fixpoints

Can push a value: 〈push?x〉true

Can pop a value immediately after it is pushed: [push?x]〈pop!x〉true

This behavior can repeat forever: νZ.[push?x]〈pop!x〉Z

\� for in�nite looping"

Intuitively, �Z:� = �0 ^ �1 ^ �2 ^ � � � where �0 = true, �i+1 = �[�i=Z].

21-b

Understanding fixpoints

Can push a value: 〈push?x〉true

Can pop a value immediately after it is pushed: [push?x]〈pop!x〉true

This behavior can repeat forever: νZ.[push?x]〈pop!x〉Z

“ν for infinite looping”

Intuitively, νZ.φ = φ0 ∧ φ1 ∧ φ2 ∧ · · · where φ0 = true, φi+1 = φ[φi/Z].

21-c

Formally

µX.Λ: the least solution of the equation X = Λ

That is, µX.Λ is the least fixpoint of Λ

Terminating computation: a feature of sequential programs

�X:�: the greatest solution of the equation X = �

That is, �X:� is the greatest �xpoint of �

Nonterminating computation: a feature of concurrent programs

(better notations: �X:X = �, �X:X = �)

22

Formally

µX.Λ: the least solution of the equation X = Λ

That is, µX.Λ is the least fixpoint of Λ

Terminating computation: a feature of sequential programs

νX.Λ: the greatest solution of the equation X = Λ

That is, νX.Λ is the greatest fixpoint of Λ

Nonterminating computation: a feature of concurrent programs

(better notations: µX.X = Λ, νX.X = Λ)

22-a

Mixed fixpoints

It is always the case that whenever a value is received via channel r, it

will eventually be sent along channel s:

νX.[r?x]µY.(〈−〉Y (x) ∨ 〈s!x〉X)

23

Alternative nesting of ν:s and µ:s affects the complexity of model

checking algorithms

The alternation depth of �X:�Y:�Z:� is 3

Suppose � has X and Y free

The alternation depth of �X:�Y:�Z:� is 2

All known model checking algorithms for �-calculus are exponential in
the alternation depths of formulas

24

Alternative nesting of ν:s and µ:s affects the complexity of model

checking algorithms

Suppose φ has X and Y free

The alternation depth of νX.µY.νZ.φ is 3

The alternation depth of �X:�Y:�Z:� is 2

All known model checking algorithms for �-calculus are exponential in
the alternation depths of formulas

24-a

Alternative nesting of ν:s and µ:s affects the complexity of model

checking algorithms

Suppose φ has X and Y free

The alternation depth of νX.µY.νZ.φ is 3

The alternation depth of νX.µY.µZ.φ is 2

All known model checking algorithms for �-calculus are exponential in
the alternation depths of formulas

24-b

Alternative nesting of ν:s and µ:s affects the complexity of model

checking algorithms

Suppose φ has X and Y free

The alternation depth of νX.µY.νZ.φ is 3

The alternation depth of νX.µY.µZ.φ is 2

All known model checking algorithms for µ-calculus are exponential in

the alternation depth of the formulas

24-c

A local model checking algorithm (for finite data domains)

Given a node p ≡ (m, ρ′) in a labeled transition system (induced from

a STG) and a closed formula φ, check if p |= φ

Each state s has five attributes:

s.depth alternation depth of the formula
s.status current status, FRESH or VISITED(b)

s.σ true if the type of the formula is ν, false otherwise
s.D set of states whose current values depend on s

s.instack true if s is in the stack

25

The algorithm employs a “multi-stack” (an array of stacks indexed by

alternation depths)

pushStack(s): push s onto stack[s.depth]

top(): return the element last pushed onto stack

pop(): remove from the stack the element last pushed onto stack

modelCheck(s) = { s.status := VISITED(s.σ); push(s);

while stack is non-empty do close(top());

return s.status }

check(s) = case s.status of

FRESH =⇒ {s.status := VISITED(s.σ); push(s); return(DEFERRED, s.D)}
| VISITED(b) =⇒ return(VALUE(b), s.D)

26

close(s as (p, φ)) =

let checkAnd(W) =

let (Bi, Di) = check(si) for each si ∈ W

in if some Bi = DEFERRED then return(DEFERRED)

else if some Bi = VALUE(false) then {add s to Di; return(VALUE(false))}
else {add s to each Di; return(VALUE(true))}

B = case φ of

be ⇒ ρ(be)

| φ1 ∧ φ2 ⇒ checkAnd({(p, φ1), (p, φ2})
| φ1 ∨ φ2 ⇒ checkOr({(p, φ1), (p, φ2})
| [c?x]φ′ ⇒ checkAnd({ (pi{y 7→ v}, φ′[v/x])) | p c?y→ pi, v ∈ Val })
| 〈c?x〉φ′ ⇒ checkOr({ (pi{y 7→ v}, φ′[v/x])) | p c?y→ pi, v ∈ Val })
| ...

in if B = VALUE(b) then

{pop(); if s.status = VISITED(b′) and b′ 6= b

then {s.status := VISITED(b); restore(s.D, b)}}
else ...

27

restore(D, b) = for each s ∈ D

if s.status = VISITED(b′) and b′ 6= b then

{ s.status := VISITED(s.σ);

if ¬s.instack then push(s);

restore(s.D, b); s.D := ∅ }

28

Input variables are instantiated “on-the-fly”

Example: Check c?x.P against 〈c?y〉φ, where x, y ∈ {1,2, . . . , 10}

Instantiating before running the algorithm would translate them to

c1.P [1/x] + c2.P [2/x] + · · ·+ c10.P [10/x] and

〈c1〉φ[1/x] ∨ 〈c2〉φ[2/x] ∨ · · · ∨ 〈c10〉φ[10/x]

resulting in 10× 10 = 100 comparisons during the execution time.

With the \on-the-
y" instantiation strategy, only 10 pairs need to be
further checked:

(c1:P [1=x]; hc1i�[1=x]); : : : ; (c10:P [10=x]; hc10i�[10=x])

29

Input variables are instantiated “on-the-fly”

Example: Check c?x.P against 〈c?y〉φ, where x, y ∈ {1,2, . . . , 10}

Instantiating before running the algorithm would translate them to

c1.P [1/x] + c2.P [2/x] + · · ·+ c10.P [10/x] and

〈c1〉φ[1/x] ∨ 〈c2〉φ[2/x] ∨ · · · ∨ 〈c10〉φ[10/x]

resulting in 10× 10 = 100 comparisons during the execution time.

With the “on-the-fly” instantiation strategy, only 10 pairs need to be

further checked:

(c1.P [1/x], 〈c1〉φ[1/x]), . . . , (c10.P [10/x], 〈c10〉φ[10/x])

29-a

For safety properties, it is sufficient to use the alternation-free frag-

ment of µ-calculus

Alternation-free:

in νX. · · ·µY.φ, X does not occur free in φ

in µY. · · · νX.φ, Y does not occur free in φ

For alternation-free µ-calculus, the time complexity of the algorithm is

linear in the size of the formula

30

Case study: German2004 cache coherence protocol

Distributed hardware architecture

Directory-based: client nodes request shared or exclusive access to a

memory address line from the “home” node

Each node can act as either the home or a client, according to how

the memory address is distributed

31

Properties to check

Abbreviation: Always(φ) ≡ νX.φ ∧ [−]X

Cache consistency:

Always(∀i, j i 6= j ⇒ (Ci.state = EXCLUSIVE ⇒ Cj.state = INVALID))

Data consistency:

Always(∀i Dir[i] 6= EXCLUSIVE ⇒ Mem = latest)

Always(∀i Ci.state 6= INVALID ⇒ Ci.datum = latest)

32

The protocol had been shown to be correct by other groups

However, when we model check it against these properties, only cache

consistency got through, data consistency didn’t

Previous work either ignored data completely, or restricted the data

domain size to 1

We set data domain size to 2, and the bug shows up!

By analyzing the counter example generated by our model checker, the

problem was fixed

Question: what about data domain of size more than 2?

33

Data Independence

Data independent domains: May have infinite many elements, but are

not subject to operations other than equality or inequality tests

Example: data transmitted in communication protocols

Can a data independent domain be collapsed to singleton?

34

Data Independence

Data independent domains: May have infinite many elements, but are

not subject to operations other than equality or inequality tests

Example: data transmitted in communication protocols

Can a data independent domain be collapsed to singleton?

34-a

No.

Consider

P : -in?x -in?y -out!x -out!y

P is data independent.

Does P |= 〈in?x〉〈in?y〉〈out!y〉〈out!x〉true?

Valid on any singleton domain, but not on domains with two or more
elements

35

No.

Consider

P : -in?x -in?y -out!x -out!y

P is data independent.

Does P |= 〈in?x〉〈in?y〉〈out!y〉〈out!x〉true?

Valid on any singleton domain, but not on domains with two or more

elements

35-a

Algorithm: only need to modify the input modality part

Use schematic values, linearly ordered: {v1, v2, . . .}

nextVal(s): returns the least schematic value not in s

B = case operator(n) of

. . .

| [c?x]φ ⇒ checkAnd({(pi{y 7→ v}, φ[v/x]) | {n → n′, p c?y→ pi, v ∈ U})

where U =

{
C ∪ nextVal(p, [c?x]φ) if x is data independent
Val otherwise

36

We set the data domain type to be “data independent”, and veri-

fied the modified protocol again, both control consistency and data

consistency got model checked

37

Other abstraction techniques used

Parameter abstraction

Bisimulation abstraction

...

38

Other case studies

Conference protocol

FLASH cache coherence protocol

More abstraction techniques used:

– Environment abstraction

– State clustering (domain specific)

– Parameter truncating (domain specific)

– ...

39

Summary

• Symbolic transition graphs as a model for concurrent programs

• A first-order µ-calculus, where fixpoint formulas are based on pred-

icates, and its graphical representation

• An algorithm for model checking concurrent systems with data

against properties expressed as formulas in the predicate µ-calculus

• Case studies showing data aspects should not be ignored in model

checking

40

Future directions

• New abstraction techniques (domain-specific)

• Working directly on the code

– Bounded model checking

– Creating models from source code

– Library function calls

• Combine model checking and testing

• From yes/no to “likehood”

41

